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ABSTRACT The understanding of body measurements and of body shapes in and between populations is
important and has many applications in medicine, surveying, fashion industry, fitness, and entertainment.
Body measurement using 3D surface scanning technologies is faster and more convenient than traditional
measurement methods and at the same time provides much more data which requires automatic processing.
A multitude of 3D scanning methods and of processing pipelines have been described in the literature and
the advent of deep learning based processing methods has generated an increased interest in the topic.
Also, over the last decade larger public 3D human scanning datasets have been released. This paper gives a
comprehensive survey of body measurement techniques with an emphasis on 3D scanning technologies and
on automatic data processing pipelines. An introduction to three most common 3D scanning technologies
in body measurement, passive stereo, structured light, and time-of-flight, is provided and their merits
w.r.t. body measurement are discussed. Methods described in the literature are discussed within the
newly proposed framework of five common processing stages: preparation, scanning, feature extraction,
model fitting, and measurement extraction. Synthesising the analysed prior works, recommendations on
specific 3D body scanning technologies and accompanying processing pipelines for the most common
applications are given. Finally, an overview of about 80 currently available 3D scanners manufactured
by about 50 companies as well as their taxonomy regarding several key characteristics is provided in the
Appendix.

INDEX TERMS body measurement, 3D surface scanning, body shape, anthropometry, deep learning

I. INTRODUCTION

Anthropometry, a subfield of applied metrology, is the
study of how to measure humans. In general anthropometry
includes the complete process of data collection, documen-
tation, summarization, and analysis [174]. In a more narrow
sense anthropometry can be defined as the science of body
measurement where lengths, breadths, heights, and circum-
ferences are used to numerically describe body segments
and overall body shape [11]. Body measurement is essential
in quantifying the variations in population and between
populations of different countries, ethnicities, cultures, and
ages [26], [137], and it strongly impacts medicine [46], [68],
surveying [56], [174], fashion industry [174], fitness [32],
and entertainment [38].

Body dimensions may be measured in various ways, e.g.
they can be obtained manually using traditional tools such

as calipers and tape measure [174], or automatically using
3D scanners and then extracting the measurements from
the obtained data. To ensure both the comparability and
the repeatability, body measurements are standardized via
definition of measurement postures and of body landmarks
[74], [75]. Although manual measurement is the gold stan-
dard, several reports suggested that human expert measurers
and 3D scanners achieve comparable accuracy and that the
repeatability is generally better for 3D scanners [82], [85],
[109]. Another advantage of using 3D scanners over expert
measurers is the measurement speed [91]: duration of an
automatic scan is often under few seconds and may go up
to half-a-minute for high-quality scans1. Therefore, although
first commercial 3D body scanners appeared around 1990s
[39] and were expensive, required trained personnel and ex-

1See Appendix A for more details
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FIGURE 1: The proposed body measurement framework. All measurements methods include scanning and measurement
extraction stages and one or more of the remaining stages.

tensive manual postprocessing [114], the scanning technol-
ogy is currently mature and is comparable in performance
to human measurers [24], [64], [175].

There are three commonly used scanning technologies for
human body data acquisition: (a) passive stereo (PS); (b)
structured light (SL); and (c) time-of-flight imaging (ToF).
PS uses images from multiple viewpoints to reconstruct
the 3D body surface using the triangulation principle [63];
it fails in the case of low or no texture. SL extends the
PS approach by projecting known light patterns, which
mitigates the main drawback of PS. In SL 3D body surface
is reconstructed from the deformations of the projected
light pattern [54]. Regarding SL, we distinguish between
projector- and laser-based methods. In ToF modulated light
is projected onto a person and the 3D body surface is
directly obtained by measuring the travel time of modulated
light [70]. Considering the multitude of data acquisition
and processing methods which have been described in the
literature there exists an increased interest in the topic which
is also substantiated by many large public 3D human body
datasets [3], [8], [24], [64], [175] released over the last
decade.

In this work we provide a comprehensive review of body
measurement based on 3D scanning starting from a review
of 3D scanning technologies and ending by describing the
most recent advances in pose and shape estimation. We
propose to divide the body measurement processing pipeline
into five stages, (1) preparation, (2) scanning, (3) feature
extraction, (4) model fitting, and (5) measurement extraction
(Fig. 1). In the preparation (stage 1), markers which identify
standard body landmarks may be placed on the body [3],
[24], [166]. The person is asked to take a pre-defined pose
[75] and to hold still until the scan ends. Scanning (stage
2) produces a 3D point cloud or depth map(s), along with
the set of images, if RGB cameras are used. In stage 3,

features such as keypoints and silhouettes are extracted
from a 3D scan and images. Based on the features or
raw image data [84], in stage 4, the optimal human 3D
template mesh2 is estimated. The primary advantage of
fitting the template mesh (a model) to the 3D scan is that any
measurement may be easily and conveniently determined
from the semantics of the model. Mesh fitting techniques
enable the creation of statistical body models, as described
in Sec. IV-D. The statistical models enable template mesh
regression directly from images and image features. Finally,
body measurements are extracted from the processed data
(3D scan, images, features, and template mesh) in stage 5.
Note that stages 2 and 5 are mandatory, while stages 1, 3,
and 4 are optional.

The remainder of this paper is structured as follows:
Prior review works on body measurements and on 3D
scanning are briefly listed in Sec. II. Three most common
scanning technologies (PS, SL and ToF) are described in
Sec. III. Proposed body measurement framework and the
five processing stages are introduced and discussed in more
detailed in Sec. IV. In Sec. V a methodology for comparison
of reviewed methods is described and methods are discussed
w.r.t. their limitations and achieved measurement errors. We
also recommend on specific scanning technology and on
the most suitable measurement pipeline for selected an-
thropometric applications. Finally, Appendix A provides an
overview of currently available commercial body scanners
and Appendix B lists currently available mobile applications
for body scanning.

2A template mesh is a graphical model comprised of vertices and
surfaces which depicts a standard human, usually in a T-pose, having a
known number of parameters which control the appearance of the mesh
(sex included).
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II. PRIOR REVIEWS
We briefly describe prior reviews in a chronological order.
The review covers 3D scanning technology and body mea-
surement.

3D scanning technology. One of the first reviews on 3D
scanning technology for anthropometry is done by Daanen
and Van de Water [39] in 1998, covering 8 commercially
available full-body scanners. The most developed scanning
technology at that time was laser line-based scanners with
vertically moving scanning heads, projecting a horizontal
line over the human body. A review on 3D body scanners
for the apparel industry [76] (2001) distinguishes laser, LED
SL, and white-light SL scanners. Based on their analysis,
the scanning time of laser scanners is usually higher than
the latter two, but SL scanners have longer data processing
times. Olds and Honey [114] claimed in 2005 that structured
light 3D scanners using white light are generally cheaper
and faster than their laser counterparts, but produce lower
quality scans. A review by D’Apuzzo from 2007 [43]
focuses on 3D body scanning technology and its application
in fashion and apparel industry. The paper distinguishes SL
and photogrammetry (passive stereo) approach. ToF sensors
were still not commercially used for 3D scanning in 2007.
Even though scanning systems were becoming smaller in
size, there were no commercial handheld or mobile scanners
dedicated to anthropometry. Another review from 2007, by
Treleaven and Wells [156], analyze 3D scanning technology
and methodology for various medical applications, like
skin analysis and burn treatment, deformity detection, and
obesity.

The updated review by Daanen and Van de Water, from
2013 [40], points out that the 3D scanning technology
improved in terms of transportation (mobility), speed, price,
and accuracy, especially regarding SL scanners. Around
that time, ToF scanners appeared on the market. The re-
view focuses on stationary 3D scanners. A book on 3D
cameras [56], from 2018, describes and provides in-depth
comparisons of ToF, SL and photogrammetry-based (PS)
3D cameras. Finally, a survey by Haleem and Javaid [61]
from 2020, similar to the one by Treleaven and Wells [156],
is focused on 3D scanning technology in medicine. The
difference is that they also take into account X-ray, CT,
MRI, and ultrasound, analyze strengths and limitations, and
discuss the specific applications of each technology.

Body measurement. A body measurement review by
Wang et al. [164] from 2000 is focused on the measurement
and analysis of body length, width, circumference, and
skinfold thickness to predict body fat percentage. The main
issue in their survey that still has not been completely
solved is the lack of standardization in body measurement.
A review by Lescay et al. [91] compares different anthropo-
metric measurement techniques; traditional anthropometry,
structured light, photogrammetry, and mobile applications,
based on precision, number of measurements, speed, and
price. Another review by Heymsfield et al. from 2019 [68]
describes the process of acquiring 3D human body scans,

creating and processing meshes, validating the acquired
data, and the applications of the obtained data in anthropom-
etry and medicine. It also distinguish between SL and ToF
scanners in terms of data acquisition techniques and mention
several stationary scanner models. A review by Dianat et
al. [44] focuses on the methodology and applications of
anthropometry in ergonomics. Their paper mostly mentions
measurement methods in terms of traditional anthropometry
and covers the existing 3D scanning technology on a high
level only.

Taking into account prior work on 3D scanning technol-
ogy, we detect the lack in the review of existing handheld
and mobile scanners, as well as the review of existing mobile
applications for 3D scanning and especially anthropometry.
To the best of our knowledge, we are the first to provide a
complete and modern overview of body measurement based
on 3D scans and RGB images.

III. 3D SCANNING TECHNOLOGIES
Several 3D scanning technologies have been proposed over
the years. As mentioned in the Introduction, we distin-
guish between three common approaches, passive stereo,
structured light, and time-of-flight imaging, which we now
describe in more detail.

A. PASSIVE STEREO
Passive stereo is a measuring technique for 3D reconstruc-
tion from multiple camera views. Photogrammetry is the sci-
ence of measuring objects from photographs. Passive stereo
and photogrammetry are sometimes used interchangeably
in the context of 3D scanning [41], [48], [135]. For clarity,
we use the passive stereo in the remainder of the paper. PS-
based 3D scanners use RGB cameras to obtain color images.
The PS assumes that multiple cameras are pointing to a
person. Under passive stereo, in this Section, we describe
stereo and monocular reconstruction principles, as well as
motion capture systems.

Stereo reconstruction. The simplest PS configuration
is a binocular stereo, a camera configuration of two hor-
izontally or vertically aligned RGB cameras (see Fig. 2).
The reconstruction is based on the correspondences between
the images, and triangulation [63]. The point P in the
3D scene projects to pixels p1 in the first and p2 in the
second image (for example, as in Fig. 2). However, for a
fixed pixel location p1, the corresponding pixel location p2
is not known a priori. The location p2 is determined by
matching an image block around p1 with the most similar
block along the epipolar line l [63]. The difference between
the corresponding pixel coordinates3 |p1− p2| (disparity) is
used to triangulate the depth of a point P [63]. The stereo
approach can be extended to more than two cameras by
coupling pairs of cameras [147] or by using multi-view-
stereo techniques [52].

3Note that the images first need to be rectified [101].
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FIGURE 2: Passive stereo approach. Point p2 is the most
similar image pixel to point p1 along the epipolar line l, as
described in Sec. III-A

Monocular reconstruction. A monocular moving-
camera-based 3D reconstruction is a special case of stereo
reconstruction, where each viewpoint (frame) is consid-
ered as a separate camera [52]. The general monocular
approaches [21], [146], [179] jointly reconstruct 3D scene
and estimate camera locations in every frame. First, the
keypoints are detected [10], [104], [138], [139] and matched
between the images [36] to find the correspondences. The
correspondences are then used for the initial 3D recon-
struction and camera parameter estimation, usually followed
by bundle adjustment (BA) refinement [157]. Human 3D
scanning is usually simpler as camera locations can be
obtained prior to the reconstruction. This is implemented
in a way that either the camera is rotating around the
person or the person is standing on a rotating platform,
mimicking camera rotation. Note that the person needs
to stay still during the quasi-static scanning. The relative
camera positions with respect to the subject are extracted
based on timestamps. To acquire dense 3D reconstruction,
the principles of stereo reconstruction described above can
be used.

Motion capture. MoCap is a (semi-) passive stereo tech-
nique that uses body markers visible under the standard or
near-infra-red light. The MoCap markers are usually small,
round objects with reflective surfaces. MoCap produces
sparse 3D reconstructions and is usually used for motion
tracking. The number of body markers is between 30 [72]
and 300 [121]. Multiple markers are often used to estimate
the location of a single keypoint (joint), as markers can only
be placed on the surface of the body.

Human body scanners using PS. Commercial 3D
scanners either use rotating monocular system or multiple
fixed cameras. For example, Texel Portal MX, Fit3D, and
BodyGee Orbiter rotate a person that is standing on a
platform, while Texel Portal BX circles around a static
body. A few examples of fixed-camera scanning systems
are Bootscan Neo, TC2-21B, and 3IOSK by Mantis Vision
that uses from several to more than 50 RGB cameras to
obtain the reconstruction. There are several advantages of
fixed multi-camera over single-camera scanners. The first

FIGURE 3: Structured light (projector based) approach.

FIGURE 4: Structured light (laser based) approach.

advantage is reduced scanning time because neither the
cameras nor the person need to move. The second one
is the ability to scan people in motion over a period of
time, also called 4D scanning (Move4D scanner by IBV).
Thirdly, it is possible to reconstruct multiple people at once,
if the scanning area is large enough to avoid occlusions, for
example, as in Panoptic Studio [78].

Based on the images and the reconstruction described
in this Section, a mobile device camera can be considered
a special case of a monocular PS-based scanner, where a
camera is moved around a person to record a video or
take individual images. For a comprehensive overview of
the commercial 3D scanners, please refer to Appendix A
and B.

B. STRUCTURED LIGHT
To address a poor 3D reconstruction quality of PS in the
case of low or repeating texture, the usual approach is to
project a textured pattern over the scene. Active stereo (AS)
[59], [60], [71], [100] upgrades PS by projecting a light
pattern onto the body to improve the correspondence search
between views. Structured light approaches [17], [89], [142],
[160], on the other hand, search for the camera-to-light-
pattern correspondences. In the remainder of this Section,
we focus on SL technology and methods.

Technology. We distinguish two scanner types based on
SL technology - laser and projector scanners. Laser scanners
[9], [47], [100], seen in Fig. 4, use a laser to project dot or
stripe patterns over the scene. Lasers scanners present sub-
millimeter accuracy [22], [161], [174] and simpler decoding
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procedure with respect to projector-based scanners [39].
However, laser scanners usually suffer from slow scanning
time since the laser line needs to sweep the whole body
[43]. Projector-based scanners are usually faster compared to
laser scanners [160], since more complex 2D patterns can be
projected and the whole body can be scanned at once from
one view. Additionally, projector-based scanners present less
safety constraints compared to laser scanners [136]. Even
though projected-based scanners are not as accurate as laser
scanners, their accuracy range (µm - mm) is sufficient for
high-quality body measurement (see Sec. V).

In general, many classifications of the projected light
patterns have been proposed: based on the number of pro-
jected patterns (single- or multi-shot), color (achromatic or
colored), transitions (discrete or continuous), and structured
form (stripes, grids, dot arrays, gradients, etc.) [54], [118],
[143], [144], [160], as seen in Fig. 5. For (quasi-) static
human 3D scanning, short-duration achromatic multi-shot
patterns are usually used, presenting a trade-off between
acquisition speed and reconstruction accuracy [160]. For
dynamic scenes where fast acquisition is needed (see Sec.
IV-B), single-shot patterns are more suitable [81].

Reconstruction. The camera-to-light-source correspon-
dences are found depending on the light and pattern pro-
jected. Laser-based approaches mostly use pattern detection
algorithms to find the (monochromatic) light projections
in the image [50], [53]. Visible-light scanners, on the
other hand, have more complex pattern decoding mecha-
nisms [115], [129], especially in case of multiple projectors
and light interference [115], [154]. For more details, we
refer readers to relevant survey papers [144]. After the
correspondences have been obtained, ray-to-ray or ray-to-
plane triangulation can be applied [54], [56], [89], [100] to
reconstruct the 3D human body.

Human body scanners using SL. Commercial SL scan-
ners either rotate around a person or have a fixed multi-
sensor configuration that surrounds them. Stationary scan-
ners such as the HP Pro S3, 4DDynamics EOS, TC2-105
or Hexagon Aicon Primescan, rotate around the body to
obtain a whole 3D scan. Another way to move around the
body is to use handheld scanners such as the Artec Eva,
TechMed3D BodyScan Scanner, Mantis Vision F6 Smart or
ScanTech Axe B17. Stationary scanners with fixed sensor
position, such as the Artec Shapify Booth, botscan Neo,
botscan OptaONE+, TC2-105, 4D Dynamics IIID Body
Scan, showcase a camera and projector filled booth in fixed
positions that surround the scanned subject. Solutions to
avoid light interferences [163] from multiple projectors have
been proposed, but in practice, every projector illuminates
the subject in its designated time interval. Hence, acquisition
time is prolonged and proportional with the number of
scanners. For a comprehensive overview of the commercial
3D scanners, please refer to Appendix A.

(a) Discrete achromatic multi-shot
stripe pattern - Gray Code [145]

(b) Continuous achromatic
multi-shot stripe pattern - Phase

Shift [134]

(c) Discrete colored single-shot
grid pattern - M-array [117]

(d) Discrete colored single-shot
stripe pattern - De Brujin code

[119]

FIGURE 5: Structured light pattern examples.

C. TIME-OF-FLIGHT
ToF scanners, shown in Fig. 6, measure the time needed
for an emitted light signal to travel from the illumination
source to the 3D scene and back to the sensor. The distance
information is directly proportional to the time of flight of
the light signal [51], [56], [70], [92].

Technology. The main components of a ToF scanner
are the light emitter and the photodetector [56]. The light
emitter uses a laser or an LED to send a modulated beam
of light, typically in the NIR range [92]. The lens is used to
spread the light from the emitter over the whole scene. The
photodetector usually uses a matrix of point-wise sensors
[70]. For human 3D scanning, CCD/CMOS matrix sensors
are usually used.

Reconstruction. Two reconstruction methods can be dis-
tinguished: pulsed-light (direct) and continuous-wave (indi-
rect) [56], [70]. Continuous-wave (CW) methods indirectly
measure the round-trip time of an emitted light pulse and
collecting the time-dependent intensity information of the
signal [51], [126]. The distance of a point is then retrieved
(demodulated) from the phase shift of the emitted and re-
ceived light signal by their cross-correlation [70], [130]. The
emitted illumination signal amplitude is usually modulated
using a sine or a square wave [18]. The periodicity of the
waves implies a maximum scanning range, at half of the
modulation wavelength, after which an ambiguity problem
arises [65]. Increasing the modulation frequency increases
the measurement accuracy, but shortens the maximum range
[70]. The range can be extended using multiple modulation
frequencies [57], [125]. Fortunately, this does not usually
present a problem in the anthropometry application, since
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FIGURE 6: Time-of-flight approach. The black arrow indi-
cates the emanated light signal path. The red arrow indicates
the received light signal path.

human bodies are scanned from close range. Pulsed-light
(PL) methods directly measure the round-trip time of an
emitted light pulse using time-to-digital (TDC) or time-to-
amplitude (TAC) circuitry [70], [126]. Since the speed of
light is very fast, PL methods require extremely precise
timing information, in the order of picoseconds, to obtain
millimetric distance range [56], [92], [126]. Hence, PL is
not usually used for 3D body scanning.

ToF cameras present a low cost, compact size, accu-
rate and reliable sensors with lower power consumption
[51], [65], [67]. Compared to SL, ToF does not have a
spatially separate light source and camera, avoiding occlu-
sions problems between views. Additionally, it is texture-
independent with minimal post-processing time and lower-
light capabilities [151]. Even though fast frame rates can
be achieved, which is suitable for dynamic scanning [51],
[151], the biggest problem of a single ToF camera scanners
is a low scanning resolution [51]. It is possible to increase
the resolution by using multiple ToF cameras [167], but
complex light interference issues then need to be addressed
[130]. Therefore, ToF is still less applicable for (quasi-)
static scanning and body measurement.

Human body scanners using ToF. Most of the com-
mercial human body scanners, such as the SizeStream
SS20, Styku S100 and TC2-30R are based on indirect
ToF methods. In general, ToF as a standalone solution
is unable to provide high-quality 3D human body scans
due to its lower resolution. Hence, they are usually used
in combination with RGB cameras. Noticeably, a bigger
percentage of stationary scanners, such as the TC2-19R,
Naked scanner, and BodyGee Orbiter, come with a turntable
on which subjects take a standard scanning position. This
alleviates solving light interferences from having multiple
cameras. Note that all mini scanners are ToF-based and
therefore used for 3D data acquisition in mobile applications
(see Appendix B). For a comprehensive overview of the
commercial 3D scanners, please refer to Appendix A.

D. SUMMARY OF SCANNING TECHNOLOGIES
The comparison of the three scanning technologies is pro-
vided in Table 1. Regarding methodology, PS and SL rely on
finding the correspondences between the views to triangulate
3D points in space, while ToF uses time-to-distance conver-
sion and thus avoids the correspondence search problems.
The common challenge for the triangulation approaches are
the potential (self-) occlusions between the views, which
might result with holes in the 3D point cloud [52]. A way
to cope with the occlusions is to use more cameras or
viewpoints (achieved by rotating the subject or the scanner)
and to use the T-pose where self-occlusions are mitigated.

SL and ToF use light sources. In one way, it helps SL in
low-textured body areas, but it also limits its applications
to specific indoor lightning conditions. For multi-ToF scan-
ners, light causes the interference problems. Regarding the
scanning ranges, SL and ToF are limited by the illumination
source. PS scanning range is, in theory, limited by the optics,
but in practice it is several meters. All the scanning ranges
are suitable for human body scanning.

With regards to scanning of moving subjects (dynamic
scanning), PS is the most suitable because of its fast acqui-
sition time, good overall reconstruction performance, and
no light interference issues. ToF has a high reconstruction
frame rate, making it applicable for dynamic applications
[62], [152]. SL can also be used for dynamic scanning with
single-shot patterns, but for scanning slower movement only.
Moreover, single-shot offers lower reconstruction accuracy
compared to multi-shot patterns.

Finally, SL offers the best accuracy4 and resolution5,
making it the method of choice for quasi-static scanning and
body measurement. This can also be seen in the number of
commercial SL scanners6. PS and ToF have similar accuracy
and resolution range (see Table 1), but ToF generally has a
lower resolution.

IV. BODY MEASUREMENT
We describe our proposed body measurement framework
(Fig. 1), dedicating Subsections to each of the five process-
ing stages: preparation, scanning, feature extraction, model
fitting, and measurement extraction. The first two stages are
the acquisition stages, and the latter three are the processing
stages (see Fig. 1). In the acquisition stage, the subjects are
prepared and the data in form of 3D points clouds, depth
maps, or 2D images are obtained. There are two acquisition
protocols - static and dynamic. In the processing stage,
the collected input is used for body measurement. Body
measurement can be done directly on the given inputs, but
usually the features are first extracted and the body model
is fitted based on these features or the inputs.

4Accuracy is the distance between the reconstructed location and true
true location of a 3D point in space.

5Resolution is the minimal distance of two points in space that can be
differentiated and reconstructed.

6See Appendix A for more details.
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TABLE 1: Main properties of the three 3D scanning technologies with respect to human body scanning.

Passive stereo Structured light Time-of-flight
Method triangulation triangulation time-to-distance conversion
Illumination passive (ambient) active (visible, IR)
Scanning range several meters < 5m (illumination source limited)
Dynamic scanning yes yes (slower movement only) yes
Accuracy range mm - cm µm - cm mm - cm
Resolution range mm µm - mm mm
Main issues textureless body parts light interference lower resolution, multi-camera

interference

A. PREPARATION
Standardization of body landmarks, measurements, and pos-
tures is the first step to ensure the comparability of measure-
ments between the body measurement surveys [174] and to
compare the scientific results. Body landmarks represent the
same semantics for every measured subject (Fig. 7A) and
some of the body measurements can be directly derived from
landmarks (see Sec. IV-E). The landmarks are defined on the
skin to reduce the ambiguity in their locations between the
subjects. In practice, markers that represent the landmarks
are manually placed on the human body. The markers are
useful in the feature extraction (stage 3), however, marker
placing is a tedious and error-prone process so successful
markerless systems have been proposed [79], [106].

Standardization. ISO standard 7250-1:2017 [75] spec-
ifies a list of body landmarks and measurements. The
complete list of body landmarks is given in Table 2 and
the corresponding points are shown in Fig. 7 (left). The
complete list of body measurements is given in Table 3 and
the corresponding Fig. 11. There are two standard standing
poses recommended by the ISO 20685-1:2018 [74] (Fig.
7). The person is asked to take one of the two poses, hold
its breath during the scanning, and try to keep as calm as
possible [106]. In the first pose (I-pose), the subject stands
upright with the shoulders relaxed and arms hanging down
naturally, feet together. In the second pose (A-pose), feet
are 20 cm apart, arms form a 20° angle with the torso,
the elbows are straight and the palms face backward [174].
Using the standard or fixed body postures is not always
required for body measurement, but usually, it is when
creating datasets that capture shape variations [3], [8], [12],
[24], [64], [72], [175]. The pose that is also often used for
scanning is a T-pose, as seen on a neutral template mesh in
Fig. 9.

B. SCANNING
Regarding the acquisition protocol when using 3D scanners
human body may be measured in a stationary position
[3], [6], [8] or in motion [2], [108], [158]. In static scan-
ning a person is asked to take a pre-defined pose and
to hold still until the scan ends. For 3D scanners which
have longer acquisition times, e.g. scanners with rotating
heads or handheld scanners, subjects may unintentionally

TABLE 2: The list of human body landmarks according to
ISO 7250-1:2017 standard [75]. The numbers correspond to
the numbers in Fig. 7 (left). The letters R and L abbreviate
right and left.

Human body landmarks (ISO 7250)
1 tragion 12 axilla pnt. post. RL 23 supratarsale fib. R
2 orbitale 13 iliocristale RL 24 metatarsale tib. R
3 glabella 14 iliospinale ant. R 25 metatarsale fib. R
4 sellion 15 acromiale RL 26 waist level
5 gnathion 16 radiale R 27 stylion ulnare R
6 cervicale 17 stylion R 28 stylion ulnare R
7 suprasternale 19 stylion ulnare R 29 trochanterion RL
8 front neck 20 trochanterion RL 30 abdom. ext. level
9 side neck 21 tibiale R 31 buttock pnt. R level
10 mesosternale 22 sphyrion R 32 gluteale R level
11 axilla pnt. ant. RL 22 sphyrion fib. R

FIGURE 7: Body landmarks according to ISO 7250-1:2017
[75] standard and two standing postures according to 20685-
1:2018 [74]. Left axilla point posterior (#12) is not shown.
Images adapted from: [85].

move during acquisition which introduces errors so we may
distinguish such situations as quasi-static scanning. Static
scanning is the method of choice to obtain most precise
body measurements and is routinely used in production of
relatively large and diverse public 3D human body datasets
[3], [8], [24], [64], [175]. Scanning in motion usually limits
the technology to either PS or ToF. Most common are
motion capture (MoCap) systems [12], [103], [107], [108],
[158] which are PS based and which use markers attached
to the body to track movement. Other dynamic 3D scanning
systems [2] record a person in motion to analyze soft-tissue
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FIGURE 8: An example of 2D keypoints and their corre-
sponding 3D scan keypoints. The typical keypoint extraction
algorithm finds between 13 (green) and 21 keypoints (other
colors). The blue keypoints represent the neck and pelvis,
the red ones two spinal points, and the pink ones details on
the face and feet. The images are adapted from Human3.6M
dataset [72]. Note that the keypoints are manually annotated
and do not necessarily reflect the H36M dataset ground truth
locations.

deformations over time [128].
Scanning usually produces a 3D point cloud, one or more

depth maps, or a set of RGB images. In case of dynamic
scanning, a so-called 4D scans are obtained [2]. In the
processing stage, some or all of these data is used to extract
the measurements.

C. FEATURE EXTRACTION
Two types of features that are usually extracted from 3D
scans and images are keypoints and silhouettes. The location
of keypoints7 can be determined based on markers or can
be estimated automatically from a 3D scan [79], [106]. The
keypoints usually represent a selected subset of human joints
(see Fig. 8). Silhouettes either represent the points or pixels
for the whole human body, or the body segments.

Keypoint extraction. Most of the keypoint estimation
algorithms detect human joints from single or multiple
images. The joints can be represented by 2D pixel coor-
dinates in an image or 3D points in the scene. If having
a moving person, the time component can be exploited
and temporal smoothness can be applied to improve the
estimation accuracy [124]. Therefore, keypoint estimation
methods can be divided into: single-image [14], [30], [31],
[111], [176], multi-frame [124], and multi-view methods
[66], [73], [133] for 2D [14], [30], [31], [153], [176] or
3D [66], [73], [111], [124], [133] keypoint estimation. The
keypoint estimation algorithms usually find between 14 and
21 keypoints, as shown in the Fig. 8. Most of the state-of-
the-art keypoint estimation methods are deep learning-based,
due to the availability of large annotated datasets [72], [110],
[132], [148], [162]. In practice, the extracted 2D and 3D
keypoints are used for mesh fitting [23], [83], [116] (see

7Note that keypoints are called landmarks if they refer to standardized
body locations [75].

the next Subsection) and are typically not combined with
landmark extraction from 3D scans.

Motion capture [158] is a movement tracking technique
that enables the direct acquisition of precise ground truth
2D and especially8 3D keypoint locations. Most of the
previously mentioned keypoint estimation algorithms take
advantage of the ground truth data obtained using motion
capture. The examples of MoCap datasets are Human3.6M
dataset [72] (Fig. 8), HumanEva [148] (Fig. 10), and Total-
Capture [158]. The disadvantage of motion capture systems
is that they are impractical for in-the-wild scenarios.

Regarding keypoints from 3D scan, Lu and Wang [106]
proposed a system for markerless 3D scan keypoint detec-
tion. A body scan is firstly cleaned by removing the outlier
points and then segmented into five parts: head and torso,
left arm, right arm, left leg, and right leg. The initial key-
point locations are derived from the anthropometric database
[165] and then refined using four algorithms: silhouette
analysis, minimum circumference determination, grayscale
detection, and human body contour plots. The results of the
four algorithms are combined to determine the final keypoint
locations and body measurements.

Silhouette extraction. Silhouette extraction methods sep-
arate pixels that represent an object of interest (the human
body) from other pixels in an image [15]. There are three
approaches to silhouette extraction: background subtraction
[19], semantic segmentation [168], and multi-view segmen-
tation (visual-hull) [90]. In the work by Lin and Wang [99],
two silhouettes are extracted using background subtraction,
from front and side input images and 60 feature points in
total are detected on the edge of the silhouette, based on
the curve distance between them [98]. The extracted feature
points are directly used for approximate body measurement
extraction (see Subsec. IV-E).

State-of-the-art semantic segmentation methods [33],
[49], [93], [96], [171], similar to human pose estimation, are
also deep learning-based. Except for whole-body segmenta-
tion [97], [112], there are also body-part-segmented datasets
[95], [178]. Both whole body and body part segmentation
problems are particularly interesting in terms of silhouette
and body measurement extraction, as they achieve relatively
high accuracy9, even on difficult examples. A visual hull
is reconstructed by applying background subtraction or
semantic segmentation for multiple images of a fixed object
from different views [52]. A visual hull can be used as an
initial solution for mesh fitting.

D. MODEL FITTING
Model fitting is a set of techniques for finding a 3D template
mesh that best represents a given input. The given input can
be a 3D scan, 2D or 3D keypoints, or silhouette(s). The
advantage of using template meshes in the context of body

8Another way to obtain 2D pose estimation data is to manually label
human joints on a large number of images. However, this is impractical
and unreliable in case of 3D data.

9The accuracy is measured as a mean IoU (intersection over union).
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FIGURE 9: An overview of a mesh fitting process for the creation of statistical models. For every 3D scan in the scanning
dataset, a neutral template mesh is registered to the scan, producing a dataset of registered template meshes. Based on the
shape and pose variations of the registered templates, PCA can be applied to create the statistical model. The principal
components can be used to generate novel 3D meshes from the pose-shape space. The 3D scans and template meshes are
retrieved from the FAUST dataset [24]. The novel 3D meshes are generated using SMPL-X [123].

measurement estimation is that the number of vertices is
fixed and corresponding vertices have the same semantics
for all the registered meshes in the dataset. Once body
measurements are obtained for a single mesh, they can be
obtained in the same way for all the meshes. We distinguish
two model fitting techniques - mesh fitting (registration or
deformation) and mesh regression using statistical models.
In this Subsection, we describe mesh fitting, statistical
model creation, and mesh regression from 3D scans and
images.

Mesh fitting. Mesh fitting is an optimization process of
deforming an initial, template mesh to the 3D scan10. Mesh
fitting consists of pose and shape fitting [12], [69], [102],
[116], [123]. Before the optimization, a 3D scan is usually
subsampled so that the number of points is the same or
larger than the number of vertices in the template mesh [12],
[172]. First, the landmarks are used to roughly align 3D
scan and mesh [127]. Next, pose fitting is done by rigging
[16] the body skeleton parts of the template mesh and then
skinning of surface points, using linear blend (LBS) [12],
[102] or dual quaternion skinning (DQS) [116]. Once the
pose satisfies the convergence criterion, shape fitting is done
using non-rigid registration, minimizing the loss function
that usually consists of three components: landmark term,
smoothness term, and data term. The landmark term min-
imizes the distance between the corresponding landmarks
of the template mesh and the 3D scan. The smoothness
term minimizes the difference between the spatial transfor-
mations of the neighbouring vertices. Finally, the data term

10For simplicity, we only describe mesh fitting on 3D scans, but similar
techniques can be applied to features or images [84].

minimizes the distances between the corresponding vertices.
Note that the correspondence is determined at the beginning
of a shape fitting phase. Pose and shape fitting is usually
done alternately multiple times, until final convergence
[127]. Some works also take texture into account [24],
which improves fitting. The described fitting is a method of
choice for almost-complete 3D scans, obtained using high-
quality scanners. For partial 3D scan fitting, a method based
on implicit functions [37] has shown promising results on
SHARP 2020 (SHApe Recovery from Partial textured 3D
scans) challenge [141]. The result of fitting is a clean mesh
that fills up the holes in the original, noisy 3D scan.

Statistical models (SMs). Statistical models represent the
population of human bodies with respect to pose and shape
variations, usually represented by the principal components
(PCs). To create a statistical model, mesh fitting procedure
needs to be applied to each scan in a dataset. The work
by Hirshberg et al. proposed to simultaneously fit meshes,
while creating the body model [69]. One of the advantages
of simultaneous fitting and creating the model is that the
occluded 3D scan regions are properly fitted based on
the scans in different poses where these regions are not
occluded. To describe pose and shape variations in the set
of fitted template meshes, PCA is used. The purpose of
PCA is to compress the dataset of registered meshes by
finding pose and shape principal components that explain
the maximal variance of the dataset. An important advantage
of the PCA is that the PCs can be used to generate novel
template meshes [107], [122], [149], [177] from a pose-
shape parameter space. The datasets commonly used for
building SMs are CAESAR [3], Size-UK [8], ScanDB [64],
and possibly other datasets containing 3D scans [12], [24],
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[72], [148], [175].
SCAPE [12] is the first SM for both pose and shape

deformations, as well as pose-dependent shape changes (for
example, muscle contractions in different poses). They use
a set of initial, physical markers and the correlated corre-
spondence algorithm [13] to generate around 150 additional
markers. Then they apply non-rigid registration to obtain
the articulated human model. One of the main disadvan-
tages of SCAPE is that each body part is independently
rotated, which introduces artifacts near joints. To that end,
BlendSCAPE [69] smooth SCAPE body part segmentations
across part boundaries, which solves the artifacts problem.
A disadvantage of both BlendSCAPE and SCAPE is that
they use triangle deformations for the PCA. One of the most
popular statistical models, SMPL [102], showed that using
vertex instead of triangle transformations improves the final
SM. SMPL also enforces body symmetry to produce models
that are visually more pleasing for animation. Enforcing the
symmetry, however, sacrifices realism in particular poses.
An improvement over SMPL is a STAR [116] model that
enforces spatially local and sparse pose corrective blend
shapes and is independent of the symmetry optimization
component. STAR is the most expressive SM, partly due
to the fact that it is built using the largest database, a
combination of CAESAR [3] (4000 scans) and SizeUSA
dataset [6] (9000 scans).

Mesh regression from 3D scans using SMs. Once a
statistical model is built, it can be used for mesh regression.
The idea of mesh regression is to find pose and shape
parameters of the SM that best fit a given input. An example
of such an approach is done by Kwok et al. [88], consisting
of iteratively selecting the mesh from the statistical pose-
shape space and fitting the clothes to match the input 3D
scan. Prokudin et al. [131] propose a deep learning model
for template fitting, supervised by SMPL templates fitted
to the dataset before learning. The learning is based on the
distances between the set of 3D scan features, called the
basis point set and the ground truth template mesh. The
advantage of using the features to find optimal parameters
is that the (slow) rendering part that is needed to verify the
parameters is avoided.

FIGURE 10: An example of a SMPLify [23] mesh fitting
approach, based on 2D keypoints, on HumanEva dataset
[148]. The image is adapted from: [23].

Mesh regression from images using SMs. There is a

group of methods that use extracted image features (body
pose or silhouette) or RGB images direcly and exploit the
SMs for mesh regression. A large body of these methods
are based on SMPL statistical model [23], [84], [150]. For
example, SMPLify [23] is a deep learning model for 3D
shape and pose estimation from 2D keypoints. The keypoints
are detected using a 2D pose estimation algorithm [31].
Using sex-specific SMPL models, SMPLify simultaneously
estimates 3D pose and shape parameters and produces
a template mesh (see Fig. 10). The main disadvantage
of SMPLify approach is that it does not exploit image
information. A multi-task learning approach by Smith et
al. [149] uses front and side-view silhouettes and feed
them into a convolutional model to estimate 3D joints,
mesh volume, shape parameters, and pose angles (the angles
between the adjacent joints), using SMPL as an underlying
statistical model. The results, as seen in Sec. V, show that
silhouette-based approaches can be used to obtain accurate
body measurement. However, the major issue of silhouette-
based approaches is the clothed-people scenario, where it is
difficult to estimate the underlying body shape. A recent
method by Kolotouros et al. [84] uses raw pixels and
deforms an initial mesh based on graph CNN [169]. The
most similar mesh from the SMPL pose-shape space can
then be matched to the deformed mesh. Note that graph
CNN approaches can also be interesting for mesh-from-3D-
scan regression.

E. MEASUREMENT EXTRACTION
Body measurements can be extracted from: 3D scan, tem-
plate mesh, or image features. We focus on two mea-
surement types - distances (lengths, breadths, depths, and
heights) and circumferences. For other measurement types,
such as surface area measurement, we refer readers to [155].
A subset of the standardized body measurements [75] is
listed in the Table 3.

Measurements from template mesh. In case the fitted
or regressed template mesh is obtained, the number of
the vertices is known and their semantics are the same
across all samples [102]. To calculate distance measures,
for example, elbow-wrist, hip breadth, or chest depth, the
distance between the semantically corresponding vertices
can be used. The circumferences, for example, waist, thigh
or calf circumference (see Fig. 11, left), can be calculated as
the extent of an intersection between the mesh and a plane.

Measurements from the 3D scan. The measurements
can also be extracted directly from a 3D scan. The land-
marks can help to obtain distances and some of the cir-
cumferences [166]. In the work by Lu and Wang [106],
the circumferences are calculated from a point cloud using
a convex hull polygonal approximation method. The cir-
cumference points are obtained by slicing the point cloud
with a perpendicular plane. The algorithm starts in the point
with the highest X coordinate (Fig. 12b). The next point is
selected as the point with the minimal angle between the
Y-axis and the line connecting the current point X and the
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TABLE 3: An example list of 44 standardized human body measurements [75]. The measurements consist of distances
(lengths, breadths, depths, and heights), circumferences, and soft biometrics (weight, height, BMI).

Human body measurements
1 eye 12 forearm circum. L 23 weight 34 bicep circum. R
2 cervicale 13 forearm circum. R 24 height 35 shoulder breadth
3 shoulder-elbow L 14 neckbase breadth 25 BMI 36 elbow circum. L
4 shoulder-elbow R 15 thigh clearance 26 neck circum. 37 elbow circum. R
5 crotch height 16 wall-acromion distance 27 chest circum. 38 knee circum. L
6 tibial height 17 grip and forward reach 28 waist circum. 39 knee circum. R
7 chest depth 18 elbow-wrist L 29 thigh circum. L 40 neck base circum.
8 body depth 19 elbow-wrist R 30 thigh circum. R 41 neck circum.
9 thorax depth 20 hip circum. 31 calf circum. R 42 head circum.
10 chest breadth 21 buttock-popliteal 32 calf circum. R 43 trouser waist circum.
11 hip breadth 22 buttock-knee 33 bicep circum. L 44 iliac spine breadth

FIGURE 11: Body measurements on a 3D mesh (left) and
corresponding feature points on front and side-view silhou-
ettes (right). The feature points can be used to approximate
the measurements. The mesh is generated using the SCAPE
model [12].

next point, in the counter-clockwise direction (Fig. 12b).
The process is continued until the polygon is closed. The
circumference is approximated as the sum of the line lengths
between the selected points.

FIGURE 12: The convex hull polygonal approximation
method.

Measurements from image features. If the front- and
side-view silhouettes are extracted [77], [98], [99], the
measurements can be approximated using the distances
between the feature points on the silhouette (see Fig. 11).
The circumference can be approximated by a circle or an
ellipse. For example, waist breadth is the distance between
the F1 and F2 and waist depth is the distance between S1
and S2. The distance between F1 and F2 and the distance
between S1 and S2 can be used as a major and a minor axis
to approximate the hip circumference.

V. DISCUSSION
We discuss the main limitations and issues of current scan-
ning technology and body measurement framework, as well
as gathered state-of-the-art results from Table 4. Based on
the presented framework and the scanner types introduced
in this Section, we recommended pipelines for particular
body measurement applications (see Fig. 15).

A. LIMITATIONS AND CHALLENGES

Absolute scale. An important practical challenge for some
body measurement approaches, in particular, monocular and
self-calibrated [63] PS methods, is the unknown absolute
scale. The simplest way to obtain the scale is to use a
calibrated 3D scanner data as input. Selected body measure-
ment methods [7], [64], [159], [172] compared in Table 4
use 3D scans on the absolute scale as input. Another way
to recover the scale is to place an object of known size
(the calibration object) next to the subject since, to recover
absolute body measurements, it is sufficient to retrieve a
scale of a single measurement. Usually, the body height
is the most convenient body measure. Selected approaches
presented in Table 4 use either the height [45], [149],
[173] or camera parameters [25], [170] to scale images or
silhouettes in order to extract anthropometric measurements
on the absolute scale. Finally, some approaches [34], [80]
presented in Table 4 do not know the height prior to body
measurement. Hence, they estimate the camera parameters
as a part of the learning procedure to infer the absolute scale.
While [80] uses an encoder and regression approach, [34]
uses a Gaussian process latent variable model to estimate
the camera parameters.

Evaluation measures. There are multiple evaluation
measures concerning accuracy, precision and reliability
[113] that are usually reported [29], [87], [172]. This lack
of standardized evaluation measures complicates straightfor-
ward comparisons of different body measurement methods,
since the different error measures cannot be converted one
to the other. To compare selected methods, we focus on a
single reported measure, the mean absolute error (MAE),
since it is mostly reported for the published body mea-
surement methods. The MAE is a measure of accuracy,
and is calculated between the body measurement method
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TABLE 4: MAE in millimetres for different measurement methods for measurements shown in Fig. 13. The measurements
are grouped into circumferences, lengths and breadths. All the methods are evaluated on some sample of the CAESAR
[137] dataset with the exception of Yan et al. [172] (denoted with †). The results of each method were extracted from the
paper denoted in the "From" column. The table is split into three parts: 2D-based methods, 3D-based methods (further split
into published and commercial methods) and the allowable error AE [58] for some of the body parts. The best results are
bolded for both the 2D and 3D categories. The mean MAE for every method is provided.

Circumference Length Breadth Height
From A B C D E F G H I J K L M N O P Mean

2D

Smith et al. [149] [149] 14.2 11.4 16.2 25.0 15.2 5.5 10.4 7.9 11.1 10.4 6.3 11.0 6.0 8.0 8.4 7.9 10.9
Yan et al. [173] [173] 11.6 12.3 26.1 28.7 22.6 6.9 13.0 7.8 18.2 11.7 7.8 13.9 9.5 11.2 7.6 20.1 14.3
Dibra et al. 17 [45] [173] 10.8 13.1 28.3 38.6 26.0 6.5 13.4 8.0 18.5 11.8 7.9 13.4 6.9 8.7 7.7 11.8 14.5
Boisvert et al. [25] [25] 11.0 27.0 21.0 14.0 42.0 21.0 23.0 13.0 33.0 12.0 14.0 20.0 20.0 34.0 30.0 9.0 21.5
Chen et al. [34] [149] 23.0 27.0 18.0 37.0 15.0 24.0 59.0 76.0 19.0 16.0 28.0 52.0 53.0 9.0 12.0 21.0 30.6
Kanazawa et al. [80] [173] 16.3 27.2 68.3 85.3 62.8 14.3 35.6 16.7 39.3 21.4 13.6 28.6 45.3 37.2 21.8 96.5 39.4
Xi et al. [170] [149] 50.0 59.0 36.0 55.0 23.0 56.0 146.0 182.0 35.0 33.0 61.0 119.0 109.0 19.0 24.0 49.0 66.0
Bogo et al. [23]* [173] 28.1 24.4 74.5 72.8 99.1 11.9 28.4 25.9 51.3 28.4 28.8 57.8 150.2 219.1 51.9 398.5 84.4

3D

Yan et al. [172]† [172] - 9.1 14.3 12.4 8.9 4.5 5.5 - 7.9 3.0 10.6 - 13.2 - - - 8.9
Tsoli et al. [159] [159] 5.9 15.8 12.7 - 12.4 - - - - - 6.2 - 10.1 - - 7.5 10.1
Hasler et al. [64] [159] 7.5 17.0 13.0 - 16.2 - - - - - 6.6 - 10.4 - - 10.2 11.5
Anthroscan [7] [159] 7.4 21.1 12.4 - 7.5 - - - - - 7.6 - 11.7 - - 5.6 10.4

AE [58] [58] ± 5 ± 11 ± 15 ± 12 ± 12 - - - ± 6 - ± 4 - - - ± 8 ± 10 ± 9.2

estimation Eest and the ground truth Egt as follows:

MAE =
1

N

∑N

i=1
| Eest − Egt | (1)

for every subject i from the dataset. The ground truth is
usually obtained by manual measurement as noted in the
ISO 20685-1:2018 [74] standard.

Allowable error. The allowable error (AE), based on
the ANSUR study [58], defines an upper bound on the
acceptable MAE for a measurement method. The study re-
ports the median absolute deviation between measurements
made by human experts, which are considered to be the
golden standard in anthropometry, and the ground truth
for the body measurements. This indicates the limitation
of anthropometric measurement methods since the ground
truth is never exactly known. Additionally, note that the AE
measure represents the median, while the MAE represents
the mean absolute deviation from the ground truth. Hence,
the MAE is affected by possible outlier measurements and
can present higher or lower values than AE.

Datasets. While most methods are evaluated on the
CAESAR dataset, there is a fair amount of methods that
evaluate their results using their own data [27], [35], [85],
[94], [99], [105], [172]. Additionally, methods evaluated
on the CAESAR dataset, tend to use its random subsets
[149] or gender specific subsets [159]. This lack of a
standardized benchmarking dataset presents problems for
the direct comparison of measurement methods. We present
and compare results of different body measurement methods
evaluated on different datasets in Sec. V-B, assuming that
the quality and variability of each dataset is similair enough.

Body measurements. Different body measurement meth-
ods can be compared on standardized measurements defined
in the ISO 7250-1:2017 [75] standard. However, different
methods tend to report their evaluations for different mea-

surements, not always equal, as can bee seen by the missing
values in Table 4. This hinders a comprehensive comparison
of each method.

Measurements
A Head C
B Neck base C
C Chest C
D Waist C
E Hip C
F Wrist C
G Bicep C
H Forearm C
I Thigh C
J Calf C
K Ankle C
L Shoulder-crotch L
M Shoulder-wrist L
N Inside leg L
O Shoulder B
p Height

FIGURE 13: Body measurements reported in Table 4 abbre-
viated accordingly: C stands for circumference, L for length
and B for breadth. The image is adapted from: [149]

B. METHODOLOGY COMPARISON
In Table 4 we gather the MAEs of different anthropometric
measurement methods for measurements from Fig. 13, ad-
dressing the lack of literature on body measurement method
evaluations and comparisons. We classify each method
depending on their input (2D or 3D) and highlight the best
obtained results. Additionally, we group the measurements
into three categories, namely circumferences, lengths, and
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breadths, to compare their performance on different mea-
surement tasks.

The 2D methods presented in Tab 4 can be divided into
two groups. One group of methods [23], [45], [80], [149],
[173] uses images or silhouettes to learn the shape and pose
parameters of a SMPL model, or a 3D point cloud. As can
be seen, these methods outperform the second group [25],
[34], [170], that tries to map a 2D PCA space into a 3D
PCA space using a Gaussian process latent variable model
[25], [34], or simply a linear regression [170]. Additionally,
methods that try to estimate the absolute scale [34], [80],
in parallel to estimating the body measurements, seem to
perform worse in their appropriate groups.

The 3D methods presented in Table 4 are based on
fitting the SCAPE model on a 3D scan, and extracting body
measurements from the fitted model. In general, there are
fewer 3D methods compared to 2D methods, probably as
image data is more accessible that the 3D scanning datasets.

Based on the presented results, 3D-based methods are
generally better, but do not outperform 2D-based meth-
ods by a large margin. Intuitively, 3D scans hold more
information about the shape of the human body than 2D
images, and hence obtain better circumference measures.
On the other hand, 2D methods slightly outperform 3D
methods in length estimations, as seen from the shoulder-
wrist measure (measure M in Table 4), which may be easier
to estimate in 2D. Breadth measurements are unfortunately
not comparable, since measurements from 3D methods are
not provided, confirming the limitations noted in Sec. V-A.
The best 2D [149] and 3D [172] method are both based
on the SMPL [102] model. While Smith et al. [149] (2D)
use a deep learning model to predict the shape and pose
parameters of a SMPL model, Yan et al. [172] (3D) fit an
initial SMPL template to a 3D scan using ICP [20].

Compared to the commercially available anthropometry
software Anthroscan [7], 3D methods present slightly better
results. Anthroscan predicts measurements directly from a
3D scan in the standing pose and is frequently used as a
body measurement approach [42], [87], [159]. It achieves
an average MAE 1.5mm worse than the 3D method from
Yan et al. [172].

In the third part of Table 4 we show the allowable error
(AE) for measurements for which AE was measured [58].
While we can observe that the MAE is decreasing with more
recent measurement methods, none of the presented methods
are within the allowable error, indicating that the automatic
body measurement methods are still lagging behind human
anthropometers. However, this does not indicate that the
assessment methods are insufficient for real-world applica-
tions [28]. Additionally, there are commercially available 3D
scanners with 3D anthropometry software [86] that claim to
obtain results lower than the AE, and can hence be used in
applications that require greater accuracies, such as medical
and surveying applications.

FIGURE 14: Three types of 3D scanners in terms of
mobility and size: stationary (a), handheld (b) and mini-
scanners (c).

C. RECOMMENDATIONS
Based on the presented technologies, the proposed measure-
ment framework, and the previous discussion, we finally
provide practical recommendations for body measurement,
as shown in Fig. 15. First, the scanner classification is in-
troduced. Next, specific pipelines are proposed with respect
to their input. Finally, the requirements for the applications
are described along with the introduced scanner types and
pipeline recommendations.

Scanner types. We classify scanners based on their
mobility/size, into: (a) stationary; (b) handheld; (c) mini; and
(d) mobile camera11. Stationary scanners (see Fig. 14a) are
usually installed in a fixed location, e.g. a lab or a medical
facility. They are usually SL or PS based. Compared to other
scanner types they are the most accurate and reliable and
are therefore typically used to obtain ground truth data, e.g.
stationary scanners were used to create 3D body scanning
datasets like CAESAR [3], SIZE-UK [8], Scan DB [64],
and FAUST [24]. Handheld scanners (see Fig. 14b) are
designed to be moved around the imaged body area by
hand. Most of the existing handheld 3D scanners are SL
based. Mini-scanners (see Fig. 14c) are embedded in or
attached to mobile devices like smartphones and tablets to
enable 3D data acquisition. Most mini-scanners are ToF or
SL based. Finally, we distinguish mobile RGB cameras as
a separate scanner type, because they are wide-spread and
convenient for non-demanding users, and usually rely sim-
ply on monocular measurement estimation techniques12. The
four scanner types represent the data acquisition techniques
for body measurement, as shown in Fig. 15.

Pipelines. We propose and distinguish three possible
pipelines for body measurement, as shown in the right
part of Fig. 15. The first pipeline, sufficient for majority
of applications, consists of: preparation, 3D scanning, and
measurement extraction. The second pipeline is more flex-
ible and consists of: 3D scanning (without prior subject
preparation), feature extraction along with or without mesh

11For more details on the currently available scanners on the market see
Appendix A.

12For more details on mobile devices and applications for body mea-
surement assessment, see Appendix B.

VOLUME 4, 2016 13



Bartol et al.: A Review of Body Measurement using 3D Scanning

Preparation 3D scanning Measur.
extraction

3D scanning

Feature
extraction

Mesh fitting

Measur.
extractionAND / OR

2D RGB
images

Medicine

Surveying

Entertainment

Fitness

Fashion
industry

Stationary
scanners

Handheld
scanners

Mini
scanners

Mobile
camera

SCANNER
TYPES

APPLICATIONS PIPELINES

1

2

3

FIGURE 15: The diagram of practical body measurement recommendations.

fitting, and measurement extraction. In both pipelines 2D
images acquired using RGB cameras are often useful for
improving the reconstruction [120]. Finally, the third and
usually the least precise pipeline only takes 2D RGB images
as input. These images are then used for feature extraction,
mesh fitting, and measurement extraction.

Applications. We recommend specific measurement
pipelines and scanner types for different anthropometric
applications: medicine, surveying, fashion industry, fitness,
and entertainment.

For medical applications [46], [68], it is usually desirable
that high-quality body measurements are obtained. There-
fore, 3D scanning using stationary or handheld scanners,
along with the preparation stage (marker placement), is
recommended (see the first pipeline in Fig. 15). The mea-
surements can then be directly extracted from the 3D scan
(see Sec. IV).

The second application is surveying, a systematical mea-
surement of a population sample for the purpose of analyz-
ing and tracking the properties of human bodies over time
[56], [174]. High-quality surveys sometimes release their
data publicly [3], [8], which serves for the creation and
improvement of statistical models [12], [69], [79], [102],
[116], [127]. Surveying is usually done using stationary
scanners and the markers are sometimes placed on the body
to improve and simplify the measurement [56].

For fashion industry applications (garment and clothing
design), all of the four data acquisition techniques are used.
For individually designed garments, stationary scanners are
preferable [174]. For less reliable measurements and mass-
produced clothes, other data acquisition techniques are suf-
ficient.

For fitness and entertainment applications (gaming, AR,
VR, etc.), low-budget solutions using mini scanners and
mobile cameras are ideal for individual users. For fitness
applications, the body measurements are used for tracking
physical progress over time. As seen in the Appendix
B, there are a few fitness-based mobile applications that
estimate body measurements. Most of them use one or
two RGB images from different views. For gyms or fitness
centers, stationary 3D scanners might be more convenient.
Regarding entertainment, 3D human pose [73], [124] in an
AR setup allows the creation of a rigged character [16];
therefore only a rough estimate of body measurements is
needed.

VI. CONCLUSION
Anthropometry is a very important, interdisciplinary area
of research, still strongly entangled with 3D scanning
technology for the purpose of body measurements. We
have concisely reviewed the fast developing and improving
scanning technologies, becoming therefore more applicable
for the automatic body measurements. As a consequence of
this development, larger and more diverse body scanning
datasets became publicly available. This work has also
proposed and discussed different processing stages of the
body measurement framework. It was pointed out that a
particularly important processing stage is model fitting,
which includes mesh fitting and mesh regression, since it
allows the development of the expressive statistical body
models that describe pose and shape variances of a human
population sample. The 3D and 2D measurement method-
ologies and published works have been compared, the main
challenges and limitations have been identified, based on

14 VOLUME 4, 2016



Bartol et al.: A Review of Body Measurement using 3D Scanning

which several measurement pipelines have been proposed
for various applications. Reflecting on the future we recall
that pose and shape estimation from images is increasingly
becoming a very active area of research. Consequently, it
is now possible to estimate human pose and shape from
an RGB image only, in a large extent due to the advances
in deep learning research and in optimization. Combining
those advances with improvements of scanning technology,
primarily scanners becoming smaller and more convenient
while maintaining the high reconstruction accuracy, we
conclude that accuracy and reliability of body measurements
from 3D as well as from 2D data will be significantly
improved in the near future.
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APPENDIX A - 3D SCANNERS
Table VI presents an overview of the commercial 3D
scanners that have the ability to scan human bodies, ex-
cluding scanners that are not fit to the task, such as the
Revopoint Tanso S1 [4], used to reconstruct smaller objects.
We provide more than 80 currently available 3D scanners
manufactured by more than 50 companies, as well as its
taxonomy regarding several key characteristics: their mo-
bility, method of reconstruction, price, resolution, accuracy,
number of sensors, dimensions, provided texture, scanning
time and provided anthropometric software. Additionally,
we comment on their affect on human body scanning.

We observe an equal amount of stationary (booth-like)
scanners as handheld ones, whereas only a few mini scan-
ners on the market. While handheld scanners offer a quicker
scanning setup time in new environments, stationary scan-
ners are more ideal for fixed scenarios, omitting (almost)
entirely the setup process. Naturally, the mobility of a scan-
ner is correlated with its dimensions. Stationary scanners
are large and bulky, while mini scanners are compact and
portable. Hence, mini and handheld scanners offer better
applicability to the task of distributed data collection process
[174] since they present higher portability. On the other
hand, stationary scanners offer faster scanning times in
the seconds’ range, while handheld scanners offer scan-
ning times in the minutes’ range; presenting a trade-off
between their dimensions and applicability. Since breathing
and fidgeting causes human bodies to move during the
scanning process, faster scanning times are more desirable.
Nevertheless, the performance of handheld scanners does
not seem to lag behind the stationary 3D scanners, as seen
by their accuracy.

The mobility and scanning time of a scanner, seem to
mostly drive its price. Smaller scanners tend to be cheaper,
while scanners offering faster scanning times tend to be
pricier, indicating that the market is still more apprecia-
tive towards stationary scanners. Most of the scanners
use structured light (SL) to reconstruct the human body
since it offers the best reconstruction accuracy within the

FIGURE 16: A common mobile application body measure-
ment pipeline is to take front and side images, estimate 3D
human mesh, and assess the body measurements from the
mesh. Image credits: [1].

methods presented in Sec. III. Additionally, they present
the lowest resolution, followed by passive stereo (PS) and
time-of-flight (ToF), respectively. Hence, they allow dense
3D human body reconstructions, appropriate for the anthro-
pometric application. To this end, we additionally report if
the scanner comes with an anthropometry software that can
automatically extract body measurements from a 3D scan.
While texture does not directly impact the scanning process,
arguments have been made in favour of greater usecase for
textured 3D human body models [140].

The market is moving towards handheld and mini scan-
ners. Mini scanners are particularly important for the future
of tablet and smartphone scanning because they can be
attached or even embedded into devices. For example, the
Occipital sensors can be attached to a smartphone device,
while the Apple iPhone 12 has a LIDAR sensor embedded
(see Appendix B). Mini scanners are usually ToF-based,
which can be seen from Table VI. As the computing
capabilities of mobile devices further improve and ToF-
based mini scanners increase the resolution, we expect that
mobile devices will more reliable and accurate 3D scanners.

APPENDIX B - MOBILE APPLICATIONS
Mobile phones have become an emerging market for making
3D scanners more approachable. Multiple cameras [55],
new ToF sensors [5], and general development of said
phones, have made the implementation of 3D scanning tech-
niques easier. Additionally, stationary scanners are relatively
bulky and pricey. Hence, mobile 3D scanning technology
has become important, particularly for the distributed data
collection process [174]. In this Subsection, we present a
comprehensive list of available applications for 3D human
body measurement estimation (see Table VI).

The majority of the existing applications use a single
RGB camera for computing body measurements. The most
common approach (as seen in MeThreeSixty, Meepl, 3DA-
vatarBody, and many others) is to fit a tempalte mesh to
a front and side image of the subject (see Fig. 16). The
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measurements can then be extracted from the template mesh,
as described in Sec. IV. Some of the applications extract
the measurements from a single image (Nettelo) and some
take multiple images from different angles and rely on
photogrammetry for 3D reconstruction and measurements
(3DCreator, Qlone, Scann3D, 3DAvatarBody, Two Pictures
3D BODYSCAN, Mobile Scanner, SizeYou, 3D Scanner
Pro, BodyGee Coach App). A few applications use the
3D Occipital scanner attached on the smartphone device
(ItSeez3D, TechMed3D, Occipital original app), while one
(Scandy Pro) uses Apple’s LIDAR embedded sensor to
directly retrieve 3D human scans.
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TABLE 6: The existing 3D scanners on the market capable of scanning the human body in its entirety. Each scanner is described by their respective mobility
gradation: mini, handheld and stationary, with mini being the most portable ones. "Method" describes the 3D reconstruction approach as discussed in Sec. III.
Additionally, we denote laser-based SL approaches with "SL*" and projector-based SL approaches with "SL". The "Acc." and "Res." define the reconstruction
capabilities of the scanners in terms of accuracy and resolution. The measures are given in millimetres. "No. Sens." reports the number of cameras and lighting
sensors in the given scanner. The "Dims." column reports the dimension of the scanner in centimetres. The dimension can be given as a product of the height, width
and depth, or as a product of the diameter and the height of the scanner. The "Scan. Time" column reports the scanning duration in seconds of one single working
volume. "Antrhopo." reports if anthropometric measurement extraction is available in the given software. The remaining "Link", "Price" and "Texture" columns are
self-explanatory.

Manufact. Product Link Mobility /
Size

MethodPrice ($) Res.
(mm)

Acc.
(mm)

No.
Sens.

Dims. (cm) Texture Scan.
Time

Anthropo.

SizeStream SS20 sizestream.com Stationary ToF from 15k - - 20 145x188x203 Yes - -
Vitronic Vitus vitronic.com Stationary SL* 5k-10k - 1 8 - Yes - Yes
Texel Portal BX texel.graphics Stationary SL* 31k 1 - - 225×258 Yes - Yes

Portal MX Stationary SL* 26k 1 1 - 260×60×60 Yes - Yes
IBV Move4D ibv.org Stationary PS - 1 - 12+ 200x200x300 Yes - -
Artec ArtecLeo artec3d.com Handheld SL 29.8k 0.2 0.1 3 23.1x16.2x23 Yes - Yes

Artec Eva Handheld SL 19.8k 0.2 0.1 3 26.2x15.8x6.3 Yes - Yes
Artec Eva Lite Handheld SL 9800 0.5 0.1 2 26.2x15.8x6.3 No - Yes
Artec Space Spi-
der

Handheld SL 24.8k 0.1 0.05 5 19x14x13 Yes - Yes

Shapify Booth Stationary SL 180k 1.5 0.25 12 330x330x280 Yes 12 s Yes
Thor3D Calibry thor3dscanner.com Handheld SL 5790 0.6 0.1 5 16.5x8.5x27.3 Yes 60 s -
Fit3D Fit3D fit3d.com Stationary PS 10k - - 3 - - - Yes
Styku Styku S100 styku.com Stationary ToF 10k - - - 254x254x117 No - Yes
Revopoint3D Handysense revopoint3d.com Handheld SL 3000 0.3 0.1 3 21.5x12x33.6 Yes 300 s -

Acusense A1 Mini SL 1000 - 0.1-1 3 15x25x38 Yes - No
Apple iPhone 12 Pro Li-

dar
Mini ToF 999 - - - No

HP HP Pro S3 hp.com Stationary SL 3400 0.05 - 2 - Yes - No
DexaFit DexaFit dexafit.com Stationary SL - - - - - No - Yes
botspot botscan Neo botspot.de Stationary SL - 0.1 - 120 305×246 Yes - No

botscan Pro S Stationary SL - 0.2 - 300 355x2600 Yes - No
botscan Cargo Stationary SL - 0.2 - 70 605x243x259 Yes - No
OptaOne+ Stationary SL 10k- 50k 0.2 - 68 314x254 Yes - No

3dMD 3dMDBody 3dmd.com Stationary PS - 0.7 - 78+ - Yes - No
3dMDflex Stationary PS 20k- 50k - 0.2 27 - Yes - No

TechMed3D BodyScan Scanner techmed3d.com Handheld SL - - - 2 - Yes - Yes
4DDynamics IIID Body 4ddynamics.com Stationary SL - - 0.5 10 170x170x210 - - Yes

IIID Trailer Stationary SL - - - - - - - Yes
IIID ScanBooth Stationary SL - - - - 170x170x170 - - Yes
Memphisto EOS Stationary SL - - - 2 - - - -
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Manufact. Product Link Mobility /
Size

MethodPrice ($) Res.
(mm)

Acc.
(mm)

No.
Sens.

Dims. (cm) Texture Scan.
Time

Anthropo.

Memphisto EX Stationary SL - - - 3 - - - -
Pico Stationary SL - - - 2 - - - -
Pico Pro Stationary SL - - - 2 - - - -
Gotcha Handheld SL - - - 3 - - - -
Gotcha Pro Handheld SL - - - 3 - - - -

Shape
Labs

ShapeScale shapescale.com Stationary SL 499 3.1 1.58 3 120x145 Yes 60 s Yes

Naked
Labs

Naked nakedlabs.com Stationary ToF 1395 - 5 3 158x30x30 No 20 s Yes

mPort Ltd. mPod mport.com Stationary SL - - 10 - - No - Yes
Telemat
Industrie

Symcad II ST telmat.fr Stationary SL 44k - - 4 402x160x235 - - -

Symcad II HD Stationary SL 31.3k - - 4 358x134x230 - - -
Symcad III Stationary SL 15.9k - - 16 190x173x210 - - -

[TC]2 Labs TC2-105 tc2.com Stationary SL 100k- 250k 0.7 0.1 - - Yes - No
TC2-30R Stationary ToF - 2 - - 177x102 Yes - Yes
TC2-19M Stationary ToF - 1 - - - - - Yes
TC2-21B Stationary PS 30k - - - - - - -
TC2-19R Stationary ToF 1k- 10k - - - - - - -
TC2-19B Stationary ToF - - - - - - - -

Spacevision SCUVEG4-
Portable

spacevision.tokyo Stationary - 50k- 100k - 2 - 205x60x80 - - -

SCUVEG4-Flex Stationary - 50k- 100k - 2 - 205x60x80 - - -
QuantaCorp Shapewatch quantacorp.io Stationary PS - - - - - - - Yes
Mantis Vi-
sion

Studio 3iosk mantis-
vision.com

Stationary PS 30k - - 15 250x247 Yes - -

Studio 3iosk XT Stationary PS - - - 16 250x247 Yes - -
F6 SR Handheld SL 10k- 50k 0.4 0.1 3 - Yes - No
F6 Smart Handheld SL 10k- 50k 0.4 0.5 3 - Yes - No

TG3D Stu-
dio

TG 2000-F tg3ds.com Stationary SL* from 15k - - - 152x132x202 - - Yes

GOM ATOS Q gom.com Handheld SL from 60k 0.03 - 3 34x24x8.3 No - -
ScanTech KScan 20 3d-scantech.com Handheld SL from 40k 0.01 0.02 6 - No - -

KScan Magic II Handheld SL from 40k 0.01 0.02 - - No - -
Prince 775 Handheld SL from 40k 0.02 0.03 - 31x16x10 No - -
HScan 771 Handheld SL from 40k 0.05 0.03 - 31x16x10 No - -
Axe B17 Handheld SL from 40k 0.025 0.02 - - No - -
IReal 2E Handheld SL 4980 3 0.1 9 14x9.4x25.8 Yes - No

Hexagon Aicon Primescan hexagonmi.com Stationary SL 35k 0.016 0.016 3 300x210x175 No - No
EvixScan3D Heavy Duty Basic evixscan3d.com Stationary SL 10k- 50k - 0.02 3 430x220x65 Yes - -
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Manufact. Product Link Mobility /
Size

MethodPrice ($) Res.
(mm)

Acc.
(mm)

No.
Sens.

Dims. (cm) Texture Scan.
Time

Anthropo.

Heavy Duty Op-
tima

Stationary SL 10k- 50k - 0.0183 3 430x220x65 Yes - -

Heavy Duty
Quadro

Stationary SL 10k- 50k - 0.013 5 520x280x95 Yes - -

Polyga Carbon polyga.com Stationary SL 14.9k 0.362 0.05 2 13x41x12 Yes 1.2 s -
Compact L6 Stationary SL 11.9k 0.18 0.08 2 5.5x12.9x40 Yes 1.2 s No
Polyga H3 Handheld SL 9990 0.5 0.08 2 28x20x6 Yes - No

Shining
3D

Freescan X7 shining3d.com Handheld SL* - 0.05 0.03 2 13x9x31 No - -

EinscanPro 2X Handheld SL 5499 0.2 0.04 3 37x36.5x13.5 Yes - -
EinscanPro 2X
Plus

Handheld SL 6899 0.2 0.04 3 37x36.5x13.5 Yes - -

Einscan H Handheld SL 3 0.05 - 10.8x11x23.7 Yes - -
Peel 3D Peel 1 peel-3d.com Handheld SL 5990 0.5 0.25 2 9.6x14x25.8 No 90 s Yes

Peel 2 Handheld SL 7690 0.5 0.25 4 15x17.1x25.1 Yes 90 s Yes
Faro Freestyle3D faro.com Handheld SL* 10k- 20k 0.2 1.5 - 260x310x105 Yes - -

Freestyle3D X Handheld SL* 10k- 50k 0.2 1 - 26x31x10.5 Yes - -
Creaform GO!Scan Spark creaform3d.com Handheld SL 39.9k 0.2 0.05 - 8.9x11.4x34.6 Yes - -

HandyScan Black Handheld SL* 50k- 100k 0.1 0.035 9 14.2x7.9x28.8 No - -
HandyScan Black
Elite

Handheld SL* 50k- 100k 0.025 0.025 11 14.2x7.9x28.8 No - -

Occipital Structure Sensor structure.io Mini SL 379 - - 3 - Yes - No
BodyGee Orbiter bodygee.com Stationary ToF - - - - - Yes 90 s Yes

Boxx Stationary ToF - - - - - Yes - Yes
Intel RealSense LiDAR

Camera L515
intelrealsense.com Mini ToF 349 - 14 2 6.1x2.6 - - No

RealSense Depth
Camera D455

Mini PS 239 - - 3 12.4x2.6x2.9 No - No

RealSense Depth
Camera D435i

Mini PS 179 - - 4 9x2.5x2.5 No - No

RealSense Depth
Camera D415

Mini PS 149 - - 3 9.9x2x2.3 No - No
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TABLE 7: The existing 3D body measurement mobile applications for iOS and Android. We distinguish between the apps based on the company, main application,
scanner and the OS. Note that the main applications specified in the Table are retrieved based on the app description and the actual purpose might differ in reality.
The applications that use 2D input data only are listed above the double line; the ones that also use 3D data are given below the line. The scanner that is used for
data acquisition is specified within the "Scanner" column. The values denoted with "-" are not available.

Company App Manufacturer link Main application Scanner OS
Sony 3DCreator sony.com Entertainment RGB camera Android
Standard Cyborg Capture: 3D Scan Anything standardcyborg.com Entertainment RGB camera iOS
EyeCue Qlone qlone.pro Entertainment RGB camera iOS+Android
SmartMobileVision Scann3D smartmobilevision.com Entertainment RGB camera Android
IBV 3DAvatarBody www.ibv.org Fitness / Fashion RGB camera Android
3DLook Mobile Tailor 3dlook.me Fashion RGB camera -

Your Fit Fashion RGB camera -
Uniform Pro Fashion RGB camera -

QuantaCorp Two Pictures 3D BODYSCAN quantacorp.io Fitness / Fashion RGB camera iOS+Android
Size Stream LLC Mobile Scanner www.sizestream.com Fashion RGB camera iOS+Android*

MeThreeSixty Fitness RGB camera iOS+Android
Fision AG Meepl meepl.com Fashion RGB camera iOS+Android
NetVirta NetVirta netvirta.com Fashion - -
SizeYou SizeYou sizeyou.it Fashion RGB camera iOS+Android
Nettelo Nettelo nettelo.com Fashion RGB camera Android
Xplorazzy Tech 3D Scanner Pro xplorazzi.com Entertainment RGB camera Android
BodyGee BodyGee Coach App bodygee.com Fitness RGB camera Android
Scandy Scandy Pro scandy.co Entertainment LIDAR iOS
Itseez3D, Inc. ItSeez3D itseez3d.com Entertainment Occipital iOS
TechMed3D 3DSizeMe techmed3d.com Entertainment Occipital iOS
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